11,624 research outputs found

    Study of space shuttle environmental control and life support problems

    Get PDF
    Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability

    Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines

    Get PDF
    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Ly-α\alpha and the He I 10830 {\AA} lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.Comment: 15 pages, 5 figures, Frontiers in Astronomy and Space Sciences, 201

    Homogeneous links, Seifert surfaces, digraphs and the reduced Alexander polynomial

    Full text link
    We give a geometric proof of the following result of Juhasz. \emph{Let aga_g be the leading coefficient of the Alexander polynomial of an alternating knot KK. If ag<4|a_g|<4 then KK has a unique minimal genus Seifert surface.} In doing so, we are able to generalise the result, replacing `minimal genus' with `incompressible' and `alternating' with `homogeneous'. We also examine the implications of our proof for alternating links in general.Comment: 37 pages, 28 figures; v2 Main results generalised from alternating links to homogeneous links. Title change

    Some Lake Level Control Alternatives for the Great Salt Lake

    Get PDF
    Fluctuations of the level of the Great Salt Lake cause large changes in both surface area and shoreline. Developments adjacent to the lake have been damaged by both high and low lake levels; and unless measures are implemented to regulate lake level fluctuations or otherwise to protect these developments, damages will continue. Various possible managment alternatives for mitigating potential damages from lake level fluctuations need to be examined and evaluated. In this study, three possible techniques are examined for reducing damages from fluctuating water levels at the lake, namely: 1. Consumptively using an increased proportion of the inflowing fresh waters on irrigated crop lands during periods of high lake inflow. 2. Protecting important properties and facilities around the lake through the construction of a system of dikes. 3. Removing lake water through pumping into the West Dester for evaporation. The above three alternatives are evaluated only for economic feasibility, with physical, legal, and institutional constraints being neglected. The philosophy behind this approach was that if economic feasibility could be demonstrated, other investigations could follow. With reference to the first alternative, the additional irrigation is assumed to occur within the Bear River Basin. The Bear River, which contributes approximately 56 percent of the total inflow to the Great Salt Lake, drains the only tributary basin which contains significant areas of irrigable but not yet irrigated lands. A reconnaissance level economic analysis of each of the above management alternatives is presented. Bapital and annual costs are estimated and compared with estimates of the flood control venefits generated. The overall feasibility, the optimum design, and the optimum time of construction are thus determined for each alternative. From the results of the study, it is concluded that irrigation in the Bear River Basin, except perhaps as part of a multiple purpose project, and the West Desert pumping alternatives are not economically feasible. Particular configurations of the dike alternatives are economically attracive if construction is commenced when lake levels rise to elevations exceeding 4202 feet

    The Effects of Deep Oscillation Therapy for Individuals with Lower-Leg Pain

    Get PDF
    Purpose: Lower extremity (LE) pain accounts for 13-20% of injuries in the active population. LE pain has been contributed to inflexibility and fascial restrictions. Deep oscillation therapy (DOT) has been proposed to improve range of motion and reduce pain following musculoskeletal injuries. Therefore, our objective was to determine the effectiveness of DOT on ankle dorsiflexion range of motion (ROM) and pain in individuals with and without lower-leg pain. Methods: We used a single blind, pre-post experimental study in a research laboratory. Thirty-two active participants completed this study. Sixteen individuals reporting lower-leg pain and sixteen non-painful individuals completed the study. Participants received a single session of DOT performed by one researcher to their affected limb or matched limb. The intervention parameters included a 1:1 mode and 70-80% dosage. The intervention began by stimulating the lymphatic channels at the cisterna chyli, the inguinal lymph node, and the popliteal lymph node at a frequency of 150 Hz all for a minute each. Next, the researcher treated the triceps surae complex for 11 minutes at three different frequencies. Finally, the participant was treated distal to the popliteal lymph node at 25 Hz for 5 minutes. The main outcome measures included pain using the VAS and ankle dorsiflexion ROM with the weight-bearing lunge test (WBLT). Statistical analyses included descriptive statistics and F-test comparisons between and within groups. Results: The average WBLT measures for all participants increased 0.6 cm, which not to the minimal detectable change for passive ankle dorsiflexion ROM. Significant differences from pre-post measures were identified for pain on the VAS. Conclusion: While increases in ROM were identified, the difference was not clinically important. DOT was successful in decreasing lower-leg pain

    The Effects of Deep Oscillation Therapy for Individuals with Lower-Leg Pain

    Get PDF
    Purpose: Lower extremity (LE) pain accounts for 13-20% of injuries in the active population. LE pain has been contributed to inflexibility and fascial restrictions. Deep oscillation therapy (DOT) has been proposed to improve range of motion and reduce pain following musculoskeletal injuries. Therefore, our objective was to determine the effectiveness of DOT on ankle dorsiflexion range of motion (ROM) and pain in individuals with and without lower-leg pain. Methods: We used a single blind, pre-post experimental study in a research laboratory. Thirty-two active participants completed this study. Sixteen individuals reporting lower-leg pain and sixteen non-painful individuals completed the study. Participants received a single session of DOT performed by one researcher to their affected limb or matched limb. The intervention parameters included a 1:1 mode and 70-80% dosage. The intervention began by stimulating the lymphatic channels at the cisterna chyli, the inguinal lymph node, and the popliteal lymph node at a frequency of 150 Hz all for a minute each. Next, the researcher treated the triceps surae complex for 11 minutes at three different frequencies. Finally, the participant was treated distal to the popliteal lymph node at 25 Hz for 5 minutes. The main outcome measures included pain using the VAS and ankle dorsiflexion ROM with the weight-bearing lunge test (WBLT). Statistical analyses included descriptive statistics and F-test comparisons between and within groups. Results: The average WBLT measures for all participants increased 0.6 cm, which not to the minimal detectable change for passive ankle dorsiflexion ROM. Significant differences from pre-post measures were identified for pain on the VAS. Conclusion: While increases in ROM were identified, the difference was not clinically important. DOT was successful in decreasing lower-leg pain

    Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation

    Get PDF
    Despite intensive research, the role of metabolism in bacterial sporulation remains poorly understood. Here, we demonstrate that Bacillus subtilis sporulation entails a marked metabolic differentiation of the two cells comprising the sporangium: the forespore, which becomes the dormant spore, and the mother cell, which dies as sporulation completes. Our data provide evidence that metabolic precursor biosynthesis becomes restricted to the mother cell and that the forespore becomes reliant on mother cell–derived metabolites for protein synthesis. We further show that arginine is trafficked between the two cells and that proposed proteinaceous channels mediate small- molecule intercellular transport. Thus, sporulation entails the profound metabolic reprogramming of the forespore, which is depleted of key metabolic enzymes and must import metabolites from the mother cell. Together, our results provide a bacterial example analogous to progeny nurturing

    Redox-Active Nanomaterials For Nanomedicine Applications

    Get PDF
    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials

    Neutrino-induced deuteron disintegration experiment

    Get PDF
    Cross sections for the disintegration of the deuteron via neutral-current (NCD) and charged-current (CCD) interactions with reactor antineutrinos are measured to be 6.08 +/- 0.77 x 10^(-45) cm-sq and 9.83 +/- 2.04 x 10^(-45) cm-sq per neutrino, respectively, in excellent agreement with current calculations. Since the experimental NCD value depends upon the CCD value, if we use the theoretical value for the CCD reaction, we obtain the improved value of 5.98 +/- 0.54 x 10^(-45) for the NCD cross section. The neutral-current reaction allows a unique measurement of the isovector-axial vector coupling constant in the hadronic weak interaction (beta). In the standard model, this constant is predicted to be exactly 1, independent of the Weinberg angle. We measure a value of beta^2 = 1.01 +/- 0.16. Using the above improved value for the NCD cross section, beta^2 becomes 0.99 +/- 0.10.Comment: 22pages, 9 figure

    Hierarchical spin-orbital polarisation of a giant Rashba system

    Get PDF
    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids, and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarisation. Here, combining polarisation-dependent and resonant angle-resolved photoemission measurements with density-functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a re-interpretation of spin splitting in Rashba-like systems, and opens new possibilities for controlling spin polarisation through the orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at Science Advance
    corecore